RESEARCHARTICLE QuantificationofAbdominalFatinObeseand HealthyAdolescentsUsing3TeslaMagnetic ResonanceImagingandFreeSoftwarefor ImageAnalysis JulianaCristinaEloi 1 ,MatiasEpifanio 1 ,MarõÂliaMaiadeGoncËalves 2 ,AugustoPellicioli 2 , PatriciaFroelichGioraVieira 2 ,HenriqueBregolinDias 2 ,NeideBruscato 3 ,Ricardo BernardiSoder 4 ,João CarlosBatistaSantana 5 ,MarialenaMouzaki 6 , MatteoBaldisserotto 7 * 1PediatricGastroenterologist,PediatricGastroenterologyService,HospitalSãoLucasdaPontifõÂcia UniversidadeCatoÂlicadoRioGrandedoSul(PUCRS),PortoAlegre,RioGrandedoSul,Brazil,2PUCRS, PortoAlegre,RioGrandedoSul,Brazil,3VeranoÂpolis,RioGrandedoSul,Brazil,4BrainInstitute(InsCer), PUCRS,PortoAlegre,RioGrandedoSul,Brazil,5SchoolofMedicine,UniversidadeFederaldoRioGrande doSul(UFRGS),PortoAlegre,RioGrandedoSul,Brazil,6DepartmentofPediatrics,Divisionof Gastroenterology,HepatologyandNutrition,TheHospitalforSickChildren,Toronto,Canada,7Imaging CenterCoordinator,BrainInstitute(InsCer),PUCRS,PortoAlegre,RioGrandedoSul,Brazil *matteob@terra.com.br Abstract BackgroundandAims Computedtomography,whichusesionizingradiationandexpensivesoftwarepackagesfor analysisofscans,canbeusedtoquantifyabdominalfat.Theobjectiveofthisstudyisto measureabdominalfatwith3TMRIusingfreesoftwareforimageanalysisandtocorrelate thesefindingswithanthropometricandlaboratoryparametersinadolescents. Methods Thisprospectiveobservationalstudyincluded24overweight/obeseand33healthyado- lescents(meanage16.55years).AllparticipantsunderwentabdominalMRIexams.Vis- ceralandsubcutaneousfatareaandpercentagewerecorrelatedwithanthropometric parameters,lipidprofile,glucosemetabolism,andinsulinresistance.Student'sttestand Mann-Whitney'stestwasapplied.Pearson'schi-squaretestwasusedtocomparepropor- tions.TodetermineassociationsPearson'slinearcorrelationorSpearman'scorrelation wereused. Results Inbothgroups,waistcircumference(WC)wasassociatedwithvisceralfatarea(P=0.001 andP=0.01respectively),andtriglycerideswereassociatedwithfatpercentage(P=0.046 andP=0.071respectively).Inobeseindividuals,totalcholesterol/HDLratiowasassociated PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 1/12 a1111111111 a1111111111 a1111111111 a1111111111 a1111111111 OPENACCESS Citation:EloiJC,EpifanioM,deGoncËalvesMM, PellicioliA,VieiraPFG,DiasHB,etal.(2017) QuantificationofAbdominalFatinObeseand HealthyAdolescentsUsing3TeslaMagnetic ResonanceImagingandFreeSoftwareforImage Analysis.PLoSONE12(1):e0167625.doi:10.1371/ journal.pone.0167625 Editor:RaffaellaBuzzetti,UniversitadegliStudidi RomaLaSapienza,ITALY Received:April22,2016 Accepted:November17,2016 Published:January27,2017 Copyright:©2017Eloietal.Thisisanopenaccess articledistributedunderthetermsoftheCreative CommonsAttributionLicense, whichpermits unrestricteduse,distribution,andreproductionin anymedium,providedtheoriginalauthorand sourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:Thecurrentstudywasfundedby ConselhoNacionaldeDesenvolvimentoCientõÂficoe TecnoloÂgico(CNPq)grant,resultedofNotice Universal14/2012withgrantequivalenttoUSD: 13,000. CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. withvisceralfatarea(P=0.03)andpercentage(P=0.09),andinsulinandHOMA-IRwere associatedwithvisceralfatarea(P=0.001)andpercentage(P=0.005). Conclusions 3TMRIcanprovidereliableandgoodqualityimagesforquantificationofvisceralandsubcu- taneousfatbyusingafreesoftwarepackage.TheresultsdemonstratethatWCisagood predictorofvisceralfatinobeseadolescentsandvisceralfatareaisassociatedwithtotal cholesterol/HDLratio,insulinandHOMA-IR. Introduction Theprevalenceofchildhoodobesityhasbecomeamajorpublichealthissuearoundtheworld [1,2]Obesityisoftenassociatedwithmetabolicsyndrome,whichconfersanincreasedriskof cardiovasculareventsinadulthood[3±5].Previousstudieshaveshownthatcentralobesity,an indicatorofvisceraladiposity,iscorrelatedwithallthecomponentsofmetabolicsyndrome, namelyinsulinresistance,dyslipidemia,andhypertension[6,7]. WC(waistcircumference)isagoodpredictorofabdominaladiposity;however,itdoesnot allowforquantificationofadiposetissuenorcanitdistinguishbetweenvisceralandsubcuta- neousfat.Theaccurateassessmentofvisceralfatisofutmostclinicalimportance,givenits associationwithmetabolicsyndromecomponents,whichinturn,contributetoincreased morbidityandmortality.Severaltechniquesareavailabletomeasurecentraladiposity[8±10]. Whilecomputedtomography(CT)isthemostcommonlyusedimagingmodalitytomeasure abdominalfat,Magneticresonanceimaging(MRI)hasasimilaraccuracy[11].Anadvantage ofMRIistheabsenceofexposuretoionizingradiation,alimitationthatrestrictstheuseofCT inchildrenandadolescents.Inaddition,theMRIapproachtoquantifyingabdominaladipos- ityisefficient,allowingforimageaqcuisitionwithin5minutes. OneaspectthathaspreventedtheuseofbothCTandMRIistheneedforexpensiveimage analysissoftwareinthequantificationofabdominalfat[12,13]. However,Irvingetal[14]have shownthatafreesoftware,NIHImageJ,canreliablymeasureadiposetissue.Eventhoughthat studywasfocusedonCT,tonecanexpectsimilarresultsfromtheanalysisofmagneticreso- nanceimagesobtainedusingthesamesoftware. RegardingMRIstudiesofabdominalfat,mosthaveemployedequipmentwithfield strengthof1.5Tesla(T)[11,12,15]. StudiesusingMRI3Tinadultshaveshowngoodaccuracy forthequantificationofabdominalfat[11].However,itisimportanttodeterminewhether3T MRIhasgoodperformanceforevaluationofabdominalfatofobeseadolescents. Thus,theaimofthisstudywastoquantifysubcutaneousandvisceralabdominalfatofado- lescentsusing3TMRIwiththefreesoftwareandtocorrelatethesefindingswithanthropomet- ricvariablesandlaboratoryparametersthatarereflectiveofmetabolicdysregulation. MaterialsandMethods DesignandParticipants Thisprospective,cross-sectionalstudywascarriedoutbetweenMarch2013andOctober2014 andincluded57Caucasianadolescentsaged16±18years.Thestudywasapprovedthe ResearchEthicsCommitteeatouruniversityhospital.Samplesizewascalculatedas23partici- pantsineachgroupusingthePEPI4.0softwareforasignificancelevelof5%,powerof90%, 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 2/12 andaminimumofcorrelationcoefficient0.5inBMIassociationwithvisceralfatasKellyetal study. Exclusioncriteriawerechronicdiseases,hepatorenaldisease,anduseofhepatotoxicdrugs, corticosteroids,orimmunesuppressantsthatcouldpromotefatstorageintheliver. Theadolescentswererandomlyselectedfromacohortparticipatinginapopulationstudy assessinglongevity,whichwasperformedincomputersystem.Aninformedconsentformwas signedbyallparticipantsorbytheirguardians.Includedsubjectsweresubsequentlydivided intotwogroups:GroupAincluded33healthyparticipantsandGroupBincluded24over- weight/obeseparticipants(2overweight,22obese).Allunderwentanthropometricmeasure- ments,laboratorytesting,andabdominalMRImeasurements. AnthropometricData ParticipantswereclassifiedaccordingtoBMIforageashealthy(Zscore-2and<1),over- weight(Zscore1and<2),orobese(Zscore2),followingWorldHealthOrganization (WHO)guidelines[16].Participantswereweighedwearinglightclothesandnoshoes,inan uprightposition,usingananthropometercoupledtoascale(Filizola 1 )certifiedbythe NationalInstituteforMetrology,Quality,andTechnology(INMETRO).Bodymassindex (BMI)wascalculatedalongwithZscoresandpercentiles,usingWHOsoftwareAnthroPlus (http://www.who.int/growthref/tools/en/). WCwasmeasuredusingnon-stretchableplastictapeatthemidpointbetweentheiliaccrest andthelowestrib.Waisttoheightratio(WHR)wascalculated,witharatioof0.5usedascut- pointtoindicatecardiovascularrisk[17,18]. BodysurfaceareawascalculatedusingtheDuBois method.[19]Tannerpubertalstagewasdeterminedaswell[20,21]. ArterialPressure Bloodpressurewasmeasuredonthedayofanthropometricassessment.Twomeasurements wereperformedwiththesubjectsinthesittingpositionafter1and5-minuterestperiodsfol- lowingtheirarrivalatthemedicaloffice.AnINMETRO-certifiedaneroidsphygmomanometer wasused.Maximumsystolicanddiastolicpressureswererecordedandcategorizedaccording tointernationalguidelinesforage,sex,andheightasnormal,upperlimitofnormal,and hypertension[22]. LaboratoryTests Laboratorytestswereperformedfollowinga12-hourfastonthesamedayofMRIexamina- tions.Lipidprofilewasdeterminedbasedontotalcholesterol,low-densitylipoprotein(LDL) andhigh-densitylipoprotein(HDL)cholesterol,andtriglyceridelevelsusingacolorimetric enzymaticmethod(Mindray-BS380ChemistryAnalyzer).Fastingglucosewasdetermined usingaglucose-oxidaseenzymaticmethodandaMindray-BS380ChemistryAnalyzer.Fasting insulinwasdeterminedbychemiluminescence.Insulinresistance(IR)wasquantifiedby homeostasismodelassessment(HOMA)usingtheformula:HOMA-IR=fastinginsulin (?UI/mL)xfastingglucose(mmol/L)/22.5. AbdominalMagneticResonanceImaging AllMRIexamswereperformedatBrainInstituteofPUCRS.ImageswereacquiredinaSigna HDxt3.0TRMscanner(GeneralElectric,Milwaukee,USA)andaneight-elementphased arrayabdominalcoil(8-channelcoil).Patientswereimagedinthesupinepositionandaxial T1-weightedfast-spinechoimages(FOV440mm,matrix512x512,TR230,TE4.40,slice 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 3/12 thickness5.0mm,gap1.0mm,NEX1)wereobtained.Eachscanlastedapproximately5min- utes.Accordingtopreviousstudies,a5mmthicknesssliceatthelevelofL3-L4discswas selectedforthequantificationoffat,asitisthoughttorepresentthelimitoftheupperabdo- menandisnotinfluencedbyliveroradiposetissuefromthebuttocks[23,24]. Theselected imagewassavedin.TIFFformat. ImagingAnalysis TheTIFFimages(matrix512x512)wereanalyzedusingImageJsoftware(rsbweb.nih.gov/ij) withautothresholdpluginwhichconvertsautomaticallygrayscalepixelsintobinaryimages, basedinaglobalhistogram-derivedmethod.Blackpixelsrepresentadiposetissueandwhite pixelstheremainingsofttissue(muscle,solidorgans,intestinalloops,andvessels)[25].Adi- posetissuewassubsequentlycategorizedintovisceralandsubcutaneousfatthroughmanual division,whichwasaccomplishedbydrawingalinefollowingtheabdominalwalltoseparate intraandextraabdominalcompartments.Visceralandsubcutaneousfatareas(cm 2 )were measuredseparately(Fig1)[26]. StatisticalAnalysis Quantitativevariableswereexpressedasmeansandstandarddeviationormedianandinter- quartilerange.Qualitativevariableswereexpressedasabsoluteandrelativefrequencies. Student'sttestwasusedtocomparegroupmeansexceptinthepresenceofasymmetricdis- tribution,inwhichcaseMann-Whitney'stestwasapplied.Pearson'schi-squaretestwasused tocompareproportions.Todetermineassociationsbetweenvariablesineachgroup,Pearson's linearcorrelation(symmetricdistribution)orSpearman'scorrelation(asymmetricdistribu- tion)wereused. Thelevelofsignificancewassetat5%(P0.05).AllanalyseswerecarriedoutinSPSSv. 21.0. Fig1.Magneticresonanceimageofobesemale(BMI32.59).A).jpgMRIimagefromL3-L4.B)Binary ImageJimageformeasurementoffat:fatappearsinblack.Imageshowsintra-abdominal(visceral)and subcutaneousfat. doi:10.1371/journal.pone.0167625.g001 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 4/12 Results GroupAincluded16girls(48.5%)and17boys(51.5%),vs.13girls(54.2%)and11boys (45.8%)inGroupB(Table1).Meanagewas16.8±0.7 and16.3±0.7 inGroupsAandBrespec- tively.Therewerenosignificantdifferencesbetweenthegroupsintermsofgenderandage distribution. WCwassignificantlyhigherinGroupB(96,4vs75,2cmP<0.001).WHRwasalsosignifi- cantlyhigherinGroupB(P<0.001).WHRwashigherthan0.5inonlyoneparticipantin GroupA(3%),vs.22(91.7%)participantsinGroupB.BMIandbodysurfaceareaweresignifi- cantlyhigherinGroupB(P<0.001).AllstudyparticipantswereclassifiedasTannerstageV. Lipidprofileandfastingglucoselevelsweresimilarbetweenthetwogroups.However,fast- inginsulinandHOMA-IRwerehigheringroupBthanGroupA(P<0.001).Transaminases andalkalinephosphataselevelswerenotdifferentbetweenthegroups.Elevatedtransaminase levels(above22forgrilsand26forboys)wereseeninonlyonesubjectinGroupB(Table2). Asexpected,visceralandsubcutaneousfatareaandpercentage,measuredbyMRI,were significantlyhigherinGroupB(Table2).Femaleshadhighersubcutaneousfatpercentage thanmalesinbothgroups;however,therewerenogenderdifferencesintermsofvisceralfat percentage.Subcutaneousfatareawasalsohigheringirls.Totalabdominalareaandvisceral fatareaweresignificantlyhigherinGroupAboysvs.girls.BoysandgirlsinGroupBdiffered onlyinregardingsubcutaneousfatpercentage,whichwashigheringirls(P=0.006)(Table3). InGroupB,bothWCandWHRcorrelatedwithsubcutaneousandvisceralfatarea (P<0.001andP<0.01respectively).InGroupA,onlyWCcorrelatedwithvisceralfatarea (P<0.01);WHRwascorrelatedwithsubcutaneousfatareainthisgroup(P<0.01).BMIdid notcorrelatewithvisceralfat(areaorpercentage)ineithergroup.However,BMIcorrelated withsubcutaneousfatareainGroupB(P<0.001)(Table4)andtotalabdominalareainboth groups(P<0.01forGroupAandP<0.001forGroupB). Total/HDLcholesterolratiowasassociatedwithvisceralfatareaandpercentageinGroup B,butnotinGroupA.Similarly,fastinginsulinandHOMA-IRwereassociatedwithvisceral fatareaandpercentageinGroupB.Inbothgroups,therewasanassociationbetween Table1.Characteristicsofthesample. Variable(mean±SDunlessindicated) Healthy(n=33) Overweight/obese(n=24) P Age(years) 16.8±0.7 16.3±0.7 0.013* Gender a 0.877* * Male 17(51.5) 11(45.8) Female 16(48.5) 13(54.2) Systolicpressure(mmHg) 116.9±10. 6 121.3±12 .8 0.170* Diastolicpressure(mmHg) 78.7±11. 4 84.0±13. 1 0.105* WHR 0.57±0.0 6 0.44±0. 04 <0.001* WHR0.5 a 1(3.0) 22(91.7) <0.001* Waistcircumference(cm) 75.2±6.5 96.4±13. 1 <0.001* BMI(Zscore) -0.11±0.53 2.45±0. 54 <0.001* Bodysurface(m 2 ) 1.72±0.1 6 1.99±0. 21 <0.001* BMI,bodymassindex;WHR,waisttoheightratio. a n(%). *Student'sttest **Pearson'schi-squaretest. Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwooverweightparticipants,Zscore1and<2). doi:10.1371/journal.pone.0167625.t001 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 5/12 increasedvisceralfatpercentageandelevatedtriglyceridelevels;however,thisreachedsignifi- canceonlyinGroupB(P=0.046)(Table5). Discussion InthisstudywewereabletoshowthattheuseofMRI3.0Teslawiththefreesoftwarepackage ImageJallowsforsimple,efficientandsemi-automaticquantificationofabdominal Table2.LaboratoryandMRIfindingsinhealthyandobeseadolescents. Variable(mean±SDunlessindicated) Healthy(n=33) Overweight/obese(n=24) P Lipidpro®le Totalcholesterol(mg/dL) 159.2±28. 0 153.5±31 .6 0.478* HDLcholesterol(mg/dL) 57.9±10. 1 50.3±8.0 0.003* Totalcholesterol/HDLratio 2.84±0.4 9 3.16±0. 52 0.022* Triglycerides(mg/dL) 70.8±27. 4 80.0±44. 5 0.339* Glycemicpro®le Glucose(mg/dL) 80.5±6.1 81.3±7.8 0.653* Insulin(?UI/mL) a 5.1(4.5±7.0) 9.7(5.7±12.4) <0.001* * HOMA-IR a 0.94(0.79±1.31) 1.73(1.03±2.16) <0.001* * Magneticresonanceimaging Totalabdominalarea(cm 2 ) 415±63.5 692±152 <0.001* Visceralfat(cm 2 ) a 16.5(12.9±21) 57.8(40±84.5) <0.001* * Subcutaneousfat(cm 2 ) a 54.4(42±88) 250(174±347) <0.001* * %Abdominalfat(%) 20.9±9.0 44.6±9.5 <0.001* %Visceralfat(%) 4.10±1.3 6 9.11±4. 05 <0.001* %Subcutaneousfat(%) 16.8±8.5 35.4±8.3 <0.001* HDL,high-densitylipoproteincholesterol;HOMA-IR,homeostaticmodelassessmentÐinsulinresistanceindex. a Median(P25±P75). *Student'sttest; **Mann-Whitney'stest. Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwooverweightparticipants,Zscore1and<2). doi:10.1371/journal.pone.0167625.t002 Table3.MRIfindingsinadolescentboysandgirls. MRIvariables(mean±SDunlessindicated) Healthy(n=33) P Obese/overweight(n=24) P Boys Girls Boys Girls Totalabdominalarea(cm 2 ) 450±55.8 379±50.3 0.001 741±166 650±131 0.148* Visceralfatarea(cm 2 ) a 17(15±21) 15(12±19) 0.053 60(42±95) 56(38±83) 0.776** Subcutaneousfatarea(cm 2 ) a 44(33±55) 80(54±109) 0.004 219(146±351) 254(182±360) 0.424** %Abdominalfat 16.9±9.4 25.0±6.2 0.007 39.3±9.1 49.1±7.5 0.008* %Visceralfat 4.10±1.4 4.07±1.3 0.952 8.6±3.4 9.6±4.6 0.545* %Subcutaneousfat 12.8±8.6 20.9±6.1 0.004 30.7±7.3 39.5±6.9 0.006* a Median(25±75percentile). *Student'sttest; **Mann-Whitney'stest. Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwooverweightparticipants,Zscore1and<2). doi:10.1371/journal.pone.0167625.t003 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 6/12 subcutaneousandvisceralfatinacohortofleanandoverweightadolescents.Onceagainit wasshownthatBMIdidnotcorrelatewithmeasuresofabdominaladiposity,whereasWCcor- relatedwithbothvisceralandsubcutaneousfattissue.Theimportanceofquantifyingvisceral fatparticularlyofoverweightandobesesubjectswasshownagaininthisstudy,asvisceraladi- positycorrelatedwithmarkersofinsulinresistanceanddyslipidemia. ToourknowledgetherehaveonlybeentwootherstudiesreportingontheuseofMRI3.0 Teslaintheevaluationofabdominaladiposetissue,bothinadults[11,15]. Klopfensteinetal. comparedimagesobtainedbyMRI3.0TeslatoimagesobtainedusingCT,whichwasconsid- eredthegoldstandard[11].ParticipantswereyoungadultswithameanBMIof37kg/m 2 . ThisstudydemonstratedthatMRIprovidesaccuratemeasurementsofvisceralandsubcutane- ousadiposetissue.Lietal.reportedsimilarresults[15].Inthepresentstudywewereableto showthat3TMRIallowsclinicianstoobtaingoodqualityimagesinobeseadolescents. Table4.CorrelationbetweenanthropometricdataandMRIfindings. MRI Healthy(n=33) Overweight/obese(n=24) WC BMI(Zscore)Bodysurface WHR WC BMI(Zscore)Bodysurface WHR Totalabdominalarea(cm 2 ) 0.474** 0.451** 0.712*** 0.133 0.907** * 0.875*** 0.791** * 0.862*** Visceralfat(cm 2 ) 0.456** -0.067 0.268 0.294 0.426* 0.387 0.326 0.602** Subcutaneousfat(cm 2 ) 0.14 0.344 -0.211 0.455** 0.709** * 0.821*** 0.490* 0.849*** %Abdominalfat 0.145 0.173 -0.188 0.332 0.287 0.464* 0.031 0.457* %Visceralfat(%) 0.234 -0.256 0.006 0.205 0.099 0.097 0.018 0.118 %Subcutaneousfat(%) 0.115 0.223 -0.198 0.316 0.282 0.486* 0.027 0.468* BMI,bodymassindex;WC,waistcircumference;WHR,waisttoheightratio. *P<0.05; **P<0.01; ***P <0.001 doi:10.1371/journal.pone.0167625.t004 Table5.Associationbetweenmetabolicvariablesandvisceralfat. Variable Visceralfatarea(cm 2 ) %Visceralfat(%) Totalcholesterol/HDLratio Healthy r=-0.019;P=0.918 r=-0.004;P=0.981 Obese/overweight r=0.586;P=0.003 r=0.522;P=0.009 Insulinlevels(?U/mL) Healthy r s =0.019;P=0.915 r s =0.051;P=0.780 Obese/overweight r s =0.625;P=0.001 r s =0.553;P=0.005 HOMA Healthy r s =0.100;P=0.581 r s =0.065;P=0.720 Obese/overweight r s =0.625;P=0.001 r s =0.556;P=0.005 Triglyceridelevels Healthy r s =0.054;P=0.767 r s =0.318;P=0.071 Obese/overweight r s =0.264;P=0.213 r s =0.412;P=0.046 HOMA,homeostasismodelassessment;r,Pearsoncorrelationcoef®cient;r s ,Spearmancorrelation coef®cient. Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwooverweightparticipants,Zscore1 and<2 doi:10.1371/journal.pone.0167625.t005 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 7/12 TheavailabilityoffreesoftwareImageJsuggeststhattheuseofthistechnologyisgeneraliz- able.ImageJhasbeenpreviouslyshowntoprovidereliablemeasurementsofadiposetissue, withsimilaraccuracyasSlice-O-Maticversion4.3software(Tomovision)[14].Inaddition, ImageJfeaturesanªeraserºtoolthatallowsfordeletionofbowelcontents,whichcanother- wiseintroduceanoverestimateoffatmeasurements[10,11]. Incomparisontootheranthropometricparameters,WCcorrelatedbestwithvisceraladi- posityareainbothgroups.UsingMRI,Brambillaetal[27].previouslyshowedthatWCisa goodpredictorofvisceraladiposity,whereasBMIpredictssubcutaneousadiposity.Inour studyBMIdidnotcorrelatewithvisceralorsubcutaneousfat.Otherstudieshaveunderscored thesuperiorityofWCtoBMIinreflectingvisceraladiposity[28±30]. Thelimitationsofusing BMIinthisclinicalsettingarenumerous.Forexample,dependingonthedefinitionofobesity used,theprevalenceofoverweightandobesityusingthesameBMIvaluescanvarywidely [31].Furthermore,ithasbeenshownthatBMIfailstoidentifyexcessadiposityinoverone quarterofchildren[32],whichinturnmeansthatcliniciansmayfailtoidentifytheneedto screenpatientsatriskformetabolicdysregulation.Thesedata,alongwiththefactthatbecause ofitsassociationwithvisceraladiposity,anelevatedWCisassociatedwithincreasedfuture cardiovascularrisk,supporttheinclusionofWCmeasurementstotheroutinemedicalassess- mentofadolescents. WhileWCcorrelateswithmarkersofabdominaladiposity,itislimitedbythefactthatit cannotdistinguishbetweenvisceralandsubcutaneousadiposetissue.Thisisakeydistinction whendeterminingthecardiometabolicriskofpatients[33].Accesstoanefficientandcheap imagingmodality,suchastheonedescribedinthisstudy,thatcandistinguishbetweenvisceral andsubcutaneousfatcan,hence,becomplementarytothebaselineassessmentofpatientswho maybefoundtohaveanelevatedWC.Theadditionalbenefitofthistechnologyisthataccu- rateimagescanbeobtainedwithouttheriskofexposingchildrentoionizingradiation.Laslty, evidenceofincreasingvisceraladipositycanbeusedasanadditionalclinicaltooltoconveyto thefamiliestheneedtobecompliantwithlifestylechangesaimedatimprovingtheirbody compositionandultimatelydecreasingthepatients'futurecardiometabolicrisk. Wedidnotobserveelevationsinthefastingglucoseoftheadolescentsincludedinthis study.However,fastinginsulin,HOMA-IRandtriglyceridesweresignificantlyhigherinover- weightandobeseparticipants,suggestingthepresenceofinsulinresistance.Inaddition, HOMA-IRwasstronglycorrelatedwithvisceraladiposityareainobeseparticipants.Thisfind- ingisinagreementwithpreviouslypublishedstudiesthatshowacausativerelationship betweenvisceraladiposityandinsulinresistance[34,35]. Inbothgroups,therewasatrendtowardsincreasedtriglyceridelevelsandincreasedvis- ceralfatpercentage.Itshouldbenotedthatonlythreehealthy(9%)andfiveobese(20.8%)par- ticipantshadtriglyceridesabove100mg/dL.WefoundastrongcorrelationoftotaltoHDL cholesterolwithvisceralfatpercentage.Thisisinaccordancewithotherinvestigators,who havealsoshownastrongassociationbetweencentralobesityanddyslipidemia[36,37]. LimitationsofthepresentstudyincludethefactthatonlyCaucasianadolescentsof advancedpubertalstagewereincluded.Anotherlimitationisthatwedidnotassesstheaccu- racyof3TMRIinmeasuringsubcutaneousandvisceralabdominalfatbutextrapolateddata fromtheadultliteraturethatsuggeststhatthistechnologyisaccurate.Astudyassessingthe accuracyofthisMRItechnologyinadolescentswouldhaverequiredexposuretounnecessary radiation,asCTscansareconsideredthegoldstandardforthesetypesofmeasurements. Inconclusion,weshowthat3TMRIcanprovidegoodqualityimagesusingafreesoftware packagethatallowsfastandaccuratequantificationofvisceralandsubcutaneousfatinover- weightandobeseadolescents.TheabdominalfatsegmentationresultsdemonstratethatWCis 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 8/12 agoodestimateofvisceralandsubcutaneousfatandthevisceralfatareaisassociatedwith totalcholesterol/HDLcholesterol,insulinandHOMA-IR. SupportingInformation S1Data. (XLSX) S1Table.Characteristicsofthesample.BMI,bodymassindex;WHR,waisttoheightratio. an(%).  Student'sttest  Pearson'schi-squaretest.Healthy:Zscore-2and<1;Obese:Z score2(groupincludestwooverweightparticipants,Zscore1and<2). (DOCX) S2Table.LaboratoryandMRIfindingsinhealthyandobeseadolescents.HDL,high-den- sitylipoproteincholesterol;HOMA-IR,homeostaticmodelassessmentÐinsulinresistance index.aMedian(P25±P75).  Student'sttest;  Mann-Whitney'stest.Healthy:Zscore-2 and<1;Obese:Zscore2(groupincludestwooverweightparticipants,Zscore1 and<2). (DOCX) S3Table.S3Title:MRIfindingsinadolescentboysandgirls.aMedian(25±75percentile).  Student'sttest;  Mann-Whitney'stest.Healthy:Zscore-2and<1;Obese:Zscore2 (groupincludestwooverweightparticipants,Zscore1and<2). (DOCX) S4Table.CorrelationbetweenanthropometricdataandMRIfindings.BMI,bodymass index;WC,waistcircumference;WHR,waisttoheightratio.  P<0.05;  P<0.01;  P<0.001.Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwoover- weightparticipants,Zscore1and<2). (DOCX) S5Table.Associationbetweenmetabolicvariablesandvisceralfat.HOMA,homeostasis modelassessment;r,Pearsoncorrelationcoefficient;rs,Spearmancorrelationcoefficient. Healthy:Zscore-2and<1;Obese:Zscore2(groupincludestwooverweightpartici- pants,Zscore1and<2. (DOCX) AuthorContributions Conceptualization:MBJCEMEJCBSRBS. Datacuration:JCEMMGAPPFGVHBDNBMM. Formalanalysis:MBRBSMEJCE. Fundingacquisition:MBJCE. Investigation:JCEMMGAPPFGVHBDNBMM. Methodology:MBJCEMEJCBSRBS. Projectadministration:MBJCBSJCE. Resources:MMGAPPFGVHBDNBMM. Software:MBRBSJCE. 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 9/12 Supervision:MBJCBS. Validation:MBRBSJCE. Visualization:MMGAPPFGVHBDNBMM. Writing±originaldraft:MBMEMMRBS. Writing±review&editing:MBMEMMRBS. References 1.OgdenCL,CarrollMD,KitBK,FlegalKM.PrevalenceofchildhoodandadultobesityintheUnited States,2011±2012.JAMA2014;311:806±814.doi:10.1001/jama.2014.732PMID:24570244 2.deOnisM,BlossnerM,BorghiE.Globalprevalenceandtrendsofoverweightandobesityamongpre- schoolchildren.AmJClinNutr2010;92:1257±1264.doi:10.3945/ajcn.2010.29786PMID: 20861173 3.BerensonGS,SrinivasanSR,BaoW,NewmanWP3rd,TracyRE,WattigneyWA.Association betweenmultiplecardiovascularriskfactorsandatherosclerosisinchildrenandyoungadults.The BogalusaHeartStudy.NEnglJMed1998;338:1650±1656.doi:10.1056/NEJM199806043382302 PMID:9614255 4.JuonalaM,MagnussenCG,BerensonGS,VennA,BurnsTL,SabinMA,etal.Childhoodadiposity, adultadiposity,andcardiovascularriskfactors.NEnglJMed2011;365:1876±1885.doi:10.1056/ NEJMoa1010112PMID:22087679 5.TiroshA,ShaiI,AfekA,Dubnov-RazG,AyalonN,GordonB,etal.AdolescentBMItrajectoryandrisk ofdiabetesversuscoronarydisease.NEnglJMed2011;364:1315±1325.doi:10.1056/ NEJMoa1006992PMID:21470009 6.Agredo-ZuÂñigaRA,Aguilar-dePlataC,SuaÂrez-OrtegoÂnMF.Waist:heightratio,waistcircumference andmetabolicsyndromeabnormalitiesinColombianschooledadolescents:amultivariateanalysiscon- sideringlocatedadiposity.BrJNutr.2015;114(5):700±5.doi:10.1017/S0007114515002275PMID: 26279413 7.GuntscheZ,GuntscheEM,SaravõÂFD,GonzalezLM,LopezAvellanedaC,AyubE,etal.Umbilical waist-to-heightratioandtrunkfatmassindex(DXA)asmarkersofcentraladiposityandinsulinresis- tanceinArgentineanchildrenwithafamilyhistoryofmetabolicsyndrome.JPediatrEndocrinolMetab. 2010;23(3):245±56.PMID:20480723 8.KullbergJ,BrandbergJ,AngelhedJE,FrimmelH,BergelinE,StridL,etal.Whole-bodyadiposetissue analysis:comparisonofMRI,CTanddualenergyX-rayabsorptiometry.BrJRadiol2009;82:123± 130.doi:10.1259/bjr/80083156PMID:19168691 9.KarlssonAK,KullbergJ,StoklandE,AllvinK,GronowitzE,SvenssonPA,etal.Measurementsoftotal andregionalbodycompositioninpreschoolchildren:AcomparisonofMRI,DXA,andanthropometric data.Obesity(SilverSpring)2013;21:1018±1024. 10.Mook-KanamoriDO,HolzhauerS,HollesteinLM,DurmusB,ManniesingR,KoekM,etal.Abdominal fatinchildrenmeasuredbyultrasoundandcomputedtomography.UltrasoundMedBiol2009;35: 1938±1946.doi:10.1016/j.ultrasmedbio.2009.07.002PMID:19800165 11.KlopfensteinBJ,KimMS,KriskyCM,SzumowskiJ,RooneyWD,PurnellJQ.Comparisonof3TMRI andCTforthemeasurementofvisceralandsubcutaneousadiposetissueinhumans.BrJRadiol2012; 85:e826±830.doi:10.1259/bjr/57987644PMID:22514099 12.BenfieldLL,FoxKR,PetersDM,BlakeH,RogersI,GrantC,etal.Magneticresonanceimagingof abdominaladiposityinalargecohortofBritishchildren.IntJObes(Lond)2008;32:91±99. 13.AbateN,BurnsD,PeshockRM,GargA,GrundySM.Estimationofadiposetissuemassbymagnetic resonanceimaging:validationagainstdissectioninhumancadavers.JLipidRes1994;35:1490± 1496.PMID:7989873 14.IrvingBA,WeltmanJY,BrockDW,DavisCK,GaesserGa,WeltmanA.NIHImageJandSlice-O-Matic computedtomographyimagingsoftwaretoquantifysofttissue.Obesity2007;15(2):370±6.doi:10. 1038/oby.2007.573PMID:17299110 15.LiX,YoungrenJF,HyunB,SakkasGK,MulliganK,MajumdarS,etal.Technicalevaluationofinvivo abdominalfatandIMCLquantificationusingMRIandMRSIat3T.MagnResonImaging2008;26: 188±197.doi:10.1016/j.mri.2007.06.006PMID:17683890 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 10/12 16.deOnisM,OnyangoAW,BorghiE,SiyamA,NishidaC,SiekmannJ.DevelopmentofaWHOgrowth referenceforschool-agedchildrenandadolescents.BullWorldHealthOrgan2007;85:660±667.doi: 10.2471/BLT.07.043497PMID:18026621 17.NambiarS,TrubyH,DaviesPS,BaxterK.Useofthewaist-heightratiotopredictmetabolicsyndrome inobesechildrenandadolescents.JPaediatrChildHealth2013;49:E281±287.doi:10.1111/jpc. 12147PMID:23521181 18.SavvaSC,LamnisosD,KafatosAG.Predictingcardiometabolicrisk:waist-to-heightratioorBMI.A meta-analysis.DiabetesMetabSyndrObes2013;6:403±419.doi:10.2147/DMSO.S34220PMID: 24179379 19.DuBoisD,DuBoisEF.Aformulatoestimatetheapproximatesurfaceareaifheightandweightbe known.1916.Nutrition1989;5:303±311;discussion312±303.PMID:2520314 20.MarshallWA,TannerJM.Variationsinthepatternofpubertalchangesinboys.ArchDisChild1970; 45:13±23.PMID:5440182 21.MarshallWA,TannerJM.Variationsinpatternofpubertalchangesingirls.ArchDisChild1969;44: 291±303.PMID:5785179 22.Nationalhighbloodpressureeducationprogramworkinggrouponhighbloodpressureinchildrenand adolescents.Thefourthreportonthediagnosis,evaluation,andtreatmentofhighbloodpressureinchil- drenandadolescents.Pediatrics2004;114:555±576.PMID:15286277 23.SottierD,PetitJM,GuiuS,HamzaS,BenhamicheH,HillonP,etal.Quantificationofthevisceraland subcutaneousfatbycomputedtomography:interobservercorrelationofasingleslicetechnique.Diagn IntervImaging. 2013;94(9):879±84.doi:10.1016/j.diii.2013.04.006PMID:23725783 24.TongY,UdupaJK,TorigianDA.OptimizationofabdominalfatquantificationonCTimagingthrough useofstandardizedanatomicspace:anovelapproach.MedPhys.2014;41(6):063501.doi:10.1118/ 1.4876275PMID:24877839 25.SezginM&SankurB.SurveyoverImageThresholdingTechniquesandQuantitativePerformance Evaluation.JournalofElectronicImaging13(1):146±165. 26.HuHH,NayakKS,GoranMI.AssessmentofAbdominalAdiposeTissueandOrganFatContentby MagneticResonanceImaging.ObesRev.2011;12(501):e504±e515. 27.BrambillaP,BedogniG,MorenoLA,GoranMI,GutinB,FoxKR,etal.Crossvalidationofanthropometry againstmagneticresonanceimagingfortheassessmentofvisceralandsubcutaneousadiposetissue inchildren.IntJObes(Lond)2006;30:23±30. 28.SchroÈderH,RibasL,KoebnickC,FuntikovaA,GomezSF,FõÂtoM,etal.Prevalenceofabdominalobe- sityinSpanishchildrenandadolescents.Doweneedwaistcircumferencemeasurementsinpediatric practice?PLoSOne.2014;9(1):e87549.doi:10.1371/journal.pone.0087549PMID:24475305 29.GroÈber-GraÈtzD,WidhalmK,deZwaanM,ReinehrT,BluÈherS,SchwabKO,etal.Bodymassindexor waistcircumference:whichisthebetterpredictorforhypertensionanddyslipidemiainoverweight/ obesechildrenandadolescents?Associationofcardiovascularriskrelatedtobodymassindexorwaist circumference.HormResPaediatr. 2013;80(3):170±8.doi:10.1159/000354224PMID:24021483 30.SavvaSC,TornaritisM,SavvaME,KouridesY,PanagiA,SilikiotouN,etal.Waistcircumferenceand waist-to-heightratioarebetterpredictorsofcardiovasculardiseaseriskfactorsinchildrenthanbody massindex.IntJObesRelatMetabDisord. 2000;24(11):1453±8.PMID:11126342 31.Gonzalez-CasanovaI,SarmientoOL,GazmararianJA,CunninghamSA,MartorellR,PrattM,Stein AD.Comparingthreebodymassindexclassificationsystemstoassessoverweightandobesityinchil- drenandadolescents.RevPanamSaludPublica. 2013;33(5):349±55.PMID:23764666 32.JavedA,JumeanM,MuradMH,OkoroduduD,KumarS,SomersVK,etal.Diagnosticperformanceof bodymassindextoidentifyobesityasdefinedbybodyadiposityinchildrenandadolescents:asystem- aticreviewandmeta-analysis.PediatrObes. 2015;10(3):234±44.doi:10.1111/ijpo.242PMID: 24961794 33.ClementeG,ManciniM,GiaccoR,TornatoreA,RagucciM,RiccardiG.Visceraladiposityandsubclini- calatherosclerosisinhealthyyoungmen.IntJFoodSciNutr.2015;66(4):466±70.doi:10.3109/ 09637486.2015.1042845PMID:26017320 34.FraynKN.Visceralfatandinsulinresistance-causativeorcorrelative?BrJNutr.2000;83Suppl1: S71±7. 35.KabirM,CatalanoKJ,AnanthnarayanS,KimSP,VanCittersGW,DeaMK,etal.Molecularevidence supportingtheportaltheory:acausativelinkbetweenvisceraladiposityandhepaticinsulinresistance. AmJPhysiolEndocrinolMetab. 2005;288(2):E454±61.doi:10.1152/ajpendo.00203.2004PMID: 15522994 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 11/12 36.CaprioS,HymanLD,McCarthyS,LangeR,BronsonM,TamborlaneWV.Fatdistributionandcardio- vascularriskfactorsinobeseadolescentgirls:importanceoftheintraabdominalfatdepot.AmJClin Nutr1996;64:12±17.PMID:8669407 37.DanielsSR,MorrisonJA,SprecherDL,KhouryP,KimballTR.Associationofbodyfatdistributionand cardiovascularriskfactorsinchildrenandadolescents.Circulation1999;99:541±545.PMID:9927401 3TMRItoMeasureAbdominalFatinAdolescents PLOSONE|DOI:10.1371/journal.pone.0167625January27,2017 12/12